Curso de Matemática – Demonstração de conceitos
Aprenda tudo sobre os principais teoremas matemáticos neste curso online.
- Empresa: Matemática Universitária
- Nível do curso: Básico
Sobre o curso
Este curso online de matemática, diferente de outros, possui um foco específico, que são as demonstrações dos teoremas utilizados no cálculo. O curso conta com diversas aulas sobre o assunto, trabalhando temas como limite na definição, limites infinitos, demonstração do teorema do confronto e anulamento, dentre outros.Estrutura do curso
- Limite na Definição – Demonstração das Propriedades
- Limites Infinitos – Definição e Demonstrações
- Demonstração do Teorema do Confronto e Anulamento
- Limites Laterais na Definição
- Demonstração da Continuidade da Composição de Funções
- Demonstração de Intervalo de Crescimento e Decrescimento
- Demonstração da Regra da Cadeia Usando Diferenciabilidade
- Concavidade e a Segunda Derivada
- Os Intervalos Encaixantes – Contando História
- Demonstração do Teorema do Valor Intermediário
- Demonstração do Teorema de Weierstrass
- Demonstração do Teorema do Valor Médio
- Demonstração da Regra de L’Hospital.
- Teorema Fundamental do Cálculo – Parte 1
- Demonstração do Resto de Lagrangre
- Definição de Funções Logarítmicas via Integral
Aulas:
-
Explicando a Playlist de Demonstrações[Avançado] - Unicidade do Limite[Avançado] - Limite da Soma é a Soma dos Limites[Avançado] - Limite do Módulo é o Módulo do Limite[Avançado] - Limite do Produto é o Produto dos Limites[Avançado] - Limite da Divisão é a Divisão dos Limites[Avançado] - Propriedades básicas dos Limites no Infinito[Avançado] - Teorema do Confronto[Viável] - Teorema do Confronto - Função limitada multiplicada por função indo a zero[Avançado] - Limites Laterais iguais é equivalente a existência do Limite[Avançado] - Propriedades básicas de Limites Infinitos (parte 1)[Avançado] - Propriedades de Limites Infinitos (Parte 2)[Avançado] - Limite Infinito e Limite indo para zero, a relação entre f e 1/f (Parte 3)[Avançado] - Mudança de Variáveis no Limite[Avançado] - Continuidade da Composta[Médio] - Continuidade das Funções Seno e Cosseno[Médio] - O Limite Fundamental das Funções TrigonométricasIntervalos encaixantes[Avançado] - Existência da função Exponencial[Avançado] - Continuidade da função Exponencial[Avançado] - Existência do Supremo de um Conjunto Limitado[Avançado] - Toda Sequência Crescente e Limitada Converge[Médio] - Número de Euler - Parte 1 - Limite nos naturais[Viável] - Número de Euler - Parte 2 - Estendendo aos reais[Avançado] - Teorema da Conservação de Sinal de uma Função Contínua[Avançado] - Teorema de Bolzano[Viável] - Teorema do Valor Intermediário[Médio] - Toda Função contínua, injetora e definida no intervalo é monótona[Avançado] - Continuidade da Função Inversa[Avançado] - Teorema de Weierstrass[Viável] - Derivável Implica Contínua[Viável] - Derivada da Soma[Viável] - Derivada do Produto[Viável] - Derivada da Divisão[Viável] - Derivada de x^n, onde n é natural.[Viável] - Derivada da função 1/x^n[Viável] - Derivabilidade equivalente à Diferenciabilidade[Médio] - Regra da cadeia[Viável] - Derivada da Função Inversa[Viável] - Derivada da função raiz enésima[Viável] - Derivada de x^p, onde p é racional[Viável] - Derivada do seno e do cosseno[Viável] - Derivada da Função Exponencial e Logarítmica[Viável] - Derivada de x^p com p real[Médio] - Intervalos de Crescimento e de Decrescimento - Parte 1[Viável] - Todo extremante local é ponto critico[Médio] - Teorema do Valor Médio[Viável] - Intervalo de Crescimento e Decrescimento - parte 2[Médio] - Regra de L`Hospital - Caso 0 sobre 0[Avançado] - Regra de L'Hospital - Caso Infinito sobre Infinito[Médio] - Concavidade e a segunda derivadaAula 3 - Teorema Fundamental do Cálculo - Parte 1Demonstração do Resto de Lagrangre